Genetic Mutations Associated with Breast Cancer in Pakistan

Authors

  • Ruqiya Pervaiz Abdul Wali Khan University

DOI:

https://doi.org/10.18034/mjmbr.v4i2.439

Keywords:

Breast Cancer, Genetic Mutation, Cell Cycle Regulation

Abstract

Breast cancer is the most common malignancy in women worldwide. Various environmental and genetic factors are involved in breast carcinogenesis. Mutations in autosomal dominant genes account for 5-10% of breast cancer cases. It is also the most common female malignancy in Pakistan and account for 35.6% of all cancers in women. BRCA1 and BRCA2 are the key genes associated with familial and early-onset breast cancer in Pakistan. However, mutation in TP53, RAD51 and CHEK2 genes play the marginal role. In this review, the spectrums of genetic mutations associated with breast cancer in Pakistan are discussed in detail.

 

Downloads

Download data is not yet available.

Author Biography

  • Ruqiya Pervaiz, Abdul Wali Khan University

    Lecturer, Department of Zoology, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, PAKISTAN,

    and

    PhD Student, Medical Genetics Department, Faculty of Health Sciences, Near East University, North Cyprus Mersin 10, TURKEY

References

Afsharfard, A., Mozaffar, M., Orang, E., & Tahmasbpour, E. (2013). Trends in Epidemiology, Clinical and Histopathological Characteristics of Breast Cancer in Iran : Results of a 17 Year Study. Asian Pacific Journal of Cancer Prevention, 14(11). 6905-6911. DOI: https://doi.org/10.7314/APJCP.2013.14.11.6905

Amir, E., Freedman, O. C., Seruga, B., Evans, D. G. (2010). Assessing women at high risk of breast cancer: a review of risk assessment models. JNatl Cancer Inst. 102:680–691 DOI: https://doi.org/10.1093/jnci/djq088

Bartek, J., Lukas, J.(2003). Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell, 3:421–429.

Berclaz, G., Li, S., Price, K.N., Coates, A.S., Castiglione, G. M., Rudenstam, C. M., Holmberg, S. B. (2004). Body mass index as a prognostic feature inoperable breast cancer: the International Breast Cancer Study Group experience. Ann Oncol, 15(6):875–884 DOI: https://doi.org/10.1093/annonc/mdh222

Bhurgri, Y. (2004). Karachi cancer registry data–implications for the national cancer control programe of Pakistan.Asian Pacific J Cancer Prev 5, 77-82.

Buisson, R., Niraj, J., Pauty, J., Maity, R., Zhao, W., Coulombe, Y., … Masson, J.-Y. (2014). Breast cancer proteins PALB2 and BRCA2 stimulate polymerase η in recombination-associated DNA synthesis at blocked replication forks. Cell Reports, 6(3), 553–64. DOI: https://doi.org/10.1016/j.celrep.2014.01.009

Chapman, M. S., & Verma, I. M. (1996). Transcriptional activation by BRCA1. Nature, 382(6593), 678–9.

Chaturvedi, P., Eng, W. K., Zhu, Y., Mattern, M. R., Mishra, R., Hurle, M. R., … Zhou, B. B. (1999). Mammalian Chk2 is a downstream effector of the ATM-dependent DNA damage checkpoint pathway. Oncogene, 18(28), 4047–54. DOI: https://doi.org/10.1038/sj.onc.1202925

Chehab, N. H., Malikzay, A., Appel, M., & Halazonetis, T. D. (2000). Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53. Genes & Development, 14(3), 278–88.

Cheung, K. L. (2007). Endocrine therapy for breast cancer: an overview. Breast, 16 (4):327–343.

Clark, S. L., Rodriguez, A. M., Snyder, R. R., Hankins, G. D. V, & Boehning, D. (2012). Structure-Function Of The Tumor Suppressor BRCA1. Computational and Structural Biotechnology Journal, 1(1). http://doi.org/10.5936/csbj.201204005 DOI: https://doi.org/10.5936/csbj.201204005

Collins, J. S., Perry, R. T., Watson, B., Harrell, L. E., Acton, R. T., Blacker, D., … Go, R. C. (2000). Association of a haplotype for tumor necrosis factor in siblings with late-onset Alzheimer disease: the NIMH Alzheimer Disease Genetics Initiative. American Journal of Medical Genetics, 96(6), 823–30 DOI: https://doi.org/10.1002/1096-8628(20001204)96:6<823::AID-AJMG26>3.0.CO;2-I

Conway, A. B., Lynch, T. W., Zhang, Y., Fortin, G. S., Fung, C. W., Symington, L. S., & Rice, P. A. (2004). Crystal structure of a Rad51 filament. Nature Structural & Molecular Biology, 11(8), 791–6. DOI: https://doi.org/10.1038/nsmb795

Cybulski, C., Gorski, B., Huzarski, T., Masojc, B., Mierzejewski, M., Debniak, T., Teodorczyk, U., Byrski, T., Gronwald, J., Matyjasik, J., et al(2004). CHEK2 is a multiorgan cancer susceptibility gene. Am J Hum Genet, 75:1131–1135.

Davies, O. R., & Pellegrini, L. (2007). Interaction with the BRCA2 C terminus protects RAD51-DNA filaments from disassembly by BRC repeats. Nature Structural & Molecular Biology, 14(6), 475–83. DOI: https://doi.org/10.1038/nsmb1251

Falck, J., Mailand, N., Syljuåsen, R. G., Bartek, J., & Lukas, J. (2001). The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature, 410(6830), 842–7.

Hankinson, S. E. (2008). Circulating levels of sex steroids and prolactin in premenopausal women and risk of breast cancer. Adv Exp Med Biol, 617:161–169 DOI: https://doi.org/10.1007/978-0-387-69080-3_15

Kakarala, M., Rozek, L., Cote, M., Liyanage, S., Brenner, D. E. (2010). Breast cancer histology and receptor status characterization in Asian Indian and Pakistani women in the US–a SEER analysis. BMC Cancer 10:191.

Kern, S. E., Kinzler, K. W., Bruskin, A., Jarosz, D., Friedman, P., Prives, C., & Vogelstein, B. (1991). Identification of p53 as a sequence-specific DNA-binding protein. Science (New York, N.Y.), 252(5013), 1708–11 DOI: https://doi.org/10.1126/science.2047879

Kim, H., & Choi, D. H. (2013). Distribution of BRCA1 and BRCA2 mutations in Asian patients with breast cancer. Journal of Breast Cancer, 16(4), 357–365. DOI: https://doi.org/10.4048/jbc.2013.16.4.357

Lee, J. S., Collins, K. M., Brown, A. L., Lee, C. H., Chung, J. H.(2000) hCds1-mediated phosphorylation of BRCA1 regulates the DNA damage response. Nature, 404:201–204. DOI: https://doi.org/10.1038/35004614

Li, F. P., Fraumeni, J. F. Mulvihill, J.J et al., (1988). A cancer family syndrome in twenty-four kindreds. Cancer Res 48:5358–5362.

Liede, A., Malik, I. A., Aziz, Z., Delos, Rios, P., Kwan, E., Narod, S.A. (2002). Contribution of BRCA1 and BRCA2 mutations to breast and ovarian cancer in Pakistan. American Journal of Human Genetics, vol. 71(3): 595–606.

Liu, Y., Liao, J., Xu, Y., Chen,W., Liu, D., Ouyang, T., Li, J., Wang, T., Fan, Z., Fan, T., et al., (2011). A recurrent CHEK2 p.H371Y mutation is associated with breast cancer risk in Chinese women. Hum Mutat, 32:1000–1003.

Loman, N., Johannsson, O., Bendahl, P. O., et al., (1998). Steroid receptors in hereditary breast carcinomas associated with BRCA1 or BRCA2 mutations or unknown susceptibility genes. Cancer, 83, 310-9. DOI: https://doi.org/10.1002/(SICI)1097-0142(19980715)83:2<310::AID-CNCR15>3.0.CO;2-W

Majeed, W., Bilal, A., Ijaz, J., Tanweer, K., Faqir, M., Asghar, A., Ahmad, R. (2014). Breast Cancer: Major Risk Factors and Recent Developments in Treatment. Asian Pacific Journal of Cancer Prevention 15 (8), 3353-3358. DOI: https://doi.org/10.7314/APJCP.2014.15.8.3353

Malik, F. A., Ashraf, S., Kayani, A., Jiang, W. G, Mir, A., Ansar, M. (2008). Contribution of BRCA1 germline mutation in patients with sporadic breast cancer. International Seminars in Surgical Oncology, vol. 5, published online. DOI: https://doi.org/10.1186/1477-7800-5-21

Malkin, D., Li, F.P., Strong, L. C. et al., (1990). Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250:1233–1238.

Matsuoka, S., Rotman, G., Ogawa, A., Shiloh, Y., Tamai, K., Elledge, S. J. (2000). Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc Natl Acad Sci USA, 97:10389–10394.

Manié, E., Vincent-Salomon, A., Lehmann-Che, J., Pierron, G., Turpin, E., Warcoin, M., … Stern, M.-H. (2009). High frequency of TP53 mutation in BRCA1 and sporadic basal-like carcinomas but not in BRCA1 luminal breast tumors. Cancer Research, 69(2), 663–71. DOI: https://doi.org/10.1158/0008-5472.CAN-08-1560

McCoy, M. L., Mueller, C. R., & Roskelley, C. D. (2003). The role of the breast cancer susceptibility gene 1 (BRCA1) in sporadic epithelial ovarian cancer. Reproductive Biology and Endocrinology : RB&E, 1, 72.

Meindl, A., Hellebrand, H., Wiek, C., Erven, V., Wappenschmidt, B., Niederacher, D., … Hanenberg, H. (2010). Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Nature Genetics, 42(5), 410–4. DOI: https://doi.org/10.1038/ng.569

Miki, Y., Swensen, J., Shattuck-Eidens, D., Futreal, P., Harshman, K., Tavtigian, S., … et, al. (1994). A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science, 266(5182), 66–71.

Mizuta, R., LaSalle, J. M., Cheng, H. L., Shinohara, A., Ogawa, H., Copeland, N., … Alt, F. W. (1997). RAB22 and RAB163/mouse BRCA2: proteins that specifically interact with the RAD51 protein. Proceedings of the National Academy of Sciences of the United States of America, 94(13), 6927–32 DOI: https://doi.org/10.1073/pnas.94.13.6927

Moatter, T., Aban, M., Khan, S., Azam, I., & Pervez, S. (2011). BRCA1 status in Pakistani breast cancer patients with moderate family history. Journal of the College of Physicians and Surgeons--Pakistan : JCPSP, 21(11), 680–4.

Moran, M. S., Gonsalves, L., Goss, D. M., Ma, S. (2011). Breast cancers in U.S. residing Indian-Pakistani versus non-Hispanic White women: comparative analysis of clinical-pathologic features, treatment, and survival. Breast Cancer Res Treat 128:543–551.

Pimhanam C., Sangrajrang, S., Ekpanyaskul, C. (2014). Tobacco Smoke Exposure and Breast Cancer Risk in Thai Urban Females. Asian Pacific Journal of Cancer Prevention, Vol 15, 2014, 15, 7407–7411. DOI: https://doi.org/10.7314/APJCP.2014.15.17.7407

Rashid, M. U., Gull, S., Asghar, K., Muhammad, N., Amin, A., & Hamann, U. (2012). Prevalence of TP53 germ line mutations in young Pakistani breast cancer patients. Familial Cancer, 11(2), 307–311. DOI: https://doi.org/10.1007/s10689-012-9509-7

Rashid, M. U., Zaidi, A., Torres, D., Sultan, F., Benner, A., Naqvi, B., … Hamann, U. (2006). Prevalence of BRCA1 and BRCA2 mutations in Pakistani breast and ovarian cancer patients. International Journal of Cancer. Journal International Du Cancer, 119(12), 2832–2839. DOI: https://doi.org/10.1002/ijc.22269

Rashid, M. U., Muhammad, N., Faisal, S., Amin, A., & Hamann, U. (2014). Deleterious RAD51C germline mutations rarely predispose to breast and ovarian cancer in Pakistan. Breast Cancer Research and Treatment, 145(3), 775–784. DOI: https://doi.org/10.1007/s10549-014-2972-0

Rodriguez, M. C and Songyang, Z.(2008). BRCT domains: Phosphopeptide bonding and signaling models. Front Biosci 13.5904-5915. DOI: https://doi.org/10.2741/3125

Sheikh, A., Hussain, S. A., Ghori, Q., Naeem, N., Giri, S., Sathian, B., … Tamimi, D. M. Al. (2015). The Spectrum of Genetic Mutations in Breast Cancer. Asian Pacific Journal of Cancer Prevention, Vol 15, 2014, 16, 2177–2185. DOI: https://doi.org/10.7314/APJCP.2015.16.6.2177

Shuen, A. Y., & Foulkes, W. D. (2011). Inherited mutations in breast cancer genes--risk and response. Journal of Mammary Gland Biology and Neoplasia, 16(1), 3–15. DOI: https://doi.org/10.1007/s10911-011-9213-5

Silwal-Pandit, L., Vollan, H. K. M., Chin, S.-F., Rueda, O. M., McKinney, S., Osako, T., … Langerød, A. (2014). TP53 mutation spectrum in breast cancer is subtype specific and has distinct prognostic relevance. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research, 20(13), 3569–80. DOI: https://doi.org/10.1158/1078-0432.CCR-13-2943

Silva, I. S., De-Stavola, B., McCormack, V. (2008). Birth size and breast cancer risk: re-analysis of individual participant data from 32 studies. PLoS Med. doi: 10.1371/journal.pmed.0050193. DOI: https://doi.org/10.1371/journal.pmed.0050193

Thun, M. J., DeLancey, J. O., Center, M. M., Jemal, A., & Ward, E. M. (2009). The global burden of cancer: Priorities for prevention. Carcinogenesis, 31(1), 100–110. DOI: https://doi.org/10.1093/carcin/bgp263

Toh, S., Mitchell, A. A., Werler, M. M., & Hernandez-Diaz, S. (2007). Toh et al. Respond to “Compromise or Compromising?” American Journal of Epidemiology, 167(6), 644–645. DOI: https://doi.org/10.1093/aje/kwm369

Vahteristo, P., Bartkova, J., Eerola, H., Syrjakoski, K., Ojala, S., Kilpivaara, O., Tamminen, A., Kononen, J., Aittomaki, K., Heikkila, P., et al., (2002), A CHEK2 genetic variant contributing to a substantial fraction of familial breast cancer. Am J Hum Genet, 71:432–438. DOI: https://doi.org/10.1086/341943

Vander, G. P., vander, W. E., van Diest, P. J. (2011). Pathology of hereditary breast cancer. Cell Oncol (Dordr), 34, 71-88. DOI: https://doi.org/10.1007/s13402-011-0010-3

Varley, J. M. (2003). Germline TP53 mutations and Li-Fraumeni syndrome. Human Mutation, 21(3), 313–20. http://doi.org/10.1002/humu.10185 DOI: https://doi.org/10.1002/humu.10185

Vaz, F., Hanenberg, H., Schuster, B., Barker, K., Wiek, C., Erven, V., … Mathew, C. G. (2010). Mutation of the RAD51C gene in a Fanconi anemia–like disorder. Nature Genetics, 42(5), DOI: https://doi.org/10.1038/ng.570

Walsh, T., Lee, M. K., Casadei, S., Thornton, A. M., Stray, S. M., Pennil, C., … King, M.-C. (2010). Detection of inherited mutations for breast and ovarian cancer using genomic capture and massively parallel sequencing. Proceedings of the National Academy of Sciences of the United States of America, 107(28), 12629–33. DOI: https://doi.org/10.1073/pnas.1007983107

Warner, E., Hill, K., Causer, P., Plewes, D., Jong, R., Yaffe, M., … Narod, S. A. (2011). Prospective study of breast cancer incidence in women with a BRCA1 or BRCA2 mutation under surveillance with and without magnetic resonance imaging. Journal of Clinical Oncology : Official Journal of the American Society of Clinical Oncology, 29(13), 1664–9. DOI: https://doi.org/10.1200/JCO.2009.27.0835

Weischer, M., Bojesen, S. E., Ellervik, C., Tybjaerg,H. A., Nordestgaard, B. G. ( 2008). CHEK2*1100delC genotyping for clinical assessment of breast cancer risk: meta-analyses of 26,000 patient cases and 27,000 controls. J Clin Oncol, 26:542–548. DOI: https://doi.org/10.1200/JCO.2007.12.5922

Wooster, R., Bignell, G., Lancaster, J., Swift, S., Seal, S., Mangion, J., … Micklem, G. (1995). Identification of the breast cancer susceptibility gene BRCA2. Nature, 378(6559), 789–92.

Xia, B., Sheng, Q., Nakanishi, K., Ohashi, A., Wu, J., Christ, N., … Livingston, D. M. (2006). Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2. Molecular Cell, 22(6), 719–29. DOI: https://doi.org/10.1016/j.molcel.2006.05.022

Zaman, K., Bodmer, A., Pralong, F., Castiglione, G. M. (2012). Breast cancer and obesity, a dangerous relation. Rev Med Suisse, 8(342):1101–1104..

Zeng, Y., Forbes, K. C., Wu, Z., Moreno, S., Piwnica, W. H., Enoch, T.(1998) Replication checkpoint requires phosphorylation of the phosphatase Cdc25 by Cds1 or Chk1. Nature, 395:507–510. DOI: https://doi.org/10.1038/26766

Zhang, S., Phelan, C. M., Zhang, P., Rousseau, F., Ghadirian, P., Robidoux, A., Foulkes, W., Hamel, N., McCready, D., Trudeau, M., et al., (2008). Frequency of the CHEK2 1100delC mutation among women with breast cancer: an international study. Cancer Res 68:2154–2157.

-- 0 --

Downloads

Published

2017-12-31

Issue

Section

Peer-reviewed Article

How to Cite

Pervaiz, R. . (2017). Genetic Mutations Associated with Breast Cancer in Pakistan. Malaysian Journal of Medical and Biological Research, 4(2), 153-158. https://doi.org/10.18034/mjmbr.v4i2.439